新闻资讯

百林科技与您共享价值,同谋发展

Industry information

行业资讯

高超声速风洞试验介绍

发布人:百林科技 发布时间:2024-02-17 点击数:354

摘要

       风洞即风洞实验室,是以人工的方式产生并且控制气流,用来模拟飞行器或实体周围气体的流动情况,并可量度气流对实体的作用效果以及观察物理现象的一种管道状实验设备。风洞实验是飞行器研制工作中的一个不可缺少的组成部分。它在航空和航天工程的研究和发展中起着重要作用,这种实验方法,流动条件容易控制。实验时,常将模型或实物固定在风洞中进行反复吹风,通过测控仪器和设备取得实验数据。高超声速风洞是指马赫数大于 5的超声速风洞,主要用于导弹、人造卫星、航天飞机的模型实验。本文主要介绍常规高超声速风洞和实验所用高超声速风洞。

1. 引言

       风洞(wind tunnel),是能人工产生和控制气流,以模拟飞行器或物体周围气流的流动,并可量度气流对物体的作用以及观察物理现象的一种管道状实验设备,它是进行空气动力实验最常用、最有效的工具。风洞主要由洞体、驱动系统和测量控制系统组成,各部分的形式因风洞类型而异。风洞种类繁多,有不同的分类方法。

       风洞种类繁多,有不同的分类方法。按实验段气流速度大小来区分,可以分为低速、高速和高超声速风洞。

2. 高超声速风动

       高超声速风洞是指马赫数大于 5的超声速风洞,主要用于导弹、人造卫星、航天飞机的模型实验。实验项目通常有气动力、压力、传热测量和流场显示,还有动稳定性、低熔点模型烧蚀、质量引射和粒子侵蚀测量等。高超声速风洞主要有常规高超声速风洞、低密度风洞、激波风洞、热冲风洞等形式。

       高超声速风洞如要在风洞中获得更高 M数的气流(例如M≥5),一般来说单靠上游高压空气的吹冲作用还不能产生足够的压力差,这时在风洞下游出口处接上一只容积很大的真空容器,靠上冲下吸便可形成很大的压差,从而产生M≥5的高超音速气流。不过气流在经过喷管加速到高超音速的过程中会急剧膨胀,温度会随之急剧下降,从而引起气体的自身液化。为避免液化或模拟需要的温度,必须在高超音速风洞中相当于稳定段处装设加热装置。高超音速风洞依加热原理和用途的不同有多种型式。暂冲式常规高超音速风洞 较为典型,它很像常规的超音速风洞。其他型式的风洞有激波风洞、炮风洞、热冲风洞、长冲风洞、气体活塞式风洞、电弧风洞等(见超高速实验设备)。中国气动力研究和发展中心的高压-引射驱动的暂冲式常规高超音速风洞实验段直径为 0.5米。这个中心还建成一座实验段直径为2米的激波风洞。

3. 常规高超声速风洞

       常规高超声速风洞的运行原理与超声速风洞相似,主要差别在于前者须给气体加热。因为在给定的稳定段温度下,实验段气流静温随马赫数增加而降低,以致实验段气流会出现液化。实际上,由于气流膨胀过程很快,在某些实验条件下,存在不同程度的过饱和度。所以,实际使用的稳定段温度可比根据空气饱和曲线得到的温度低。根据不同的稳定段温度,对实验气体采用不同的加热方法。在通常情况下,气体燃烧加热器加热温度可达750开;镍铬电阻加热器可达1000开;铁铬铝电阻加热器可达1450开;氧化铝卵石床加热器可达1670开;氧化锆卵石床加热器可达2500开;以高纯度氮气为实验气体的钨电阻加热器可达2200开;石墨电阻加热器可达2800开。早期常规高超声速风洞常采用二维喷管。在高马赫数条件下,喉道尺寸小,表面高热流引起的热变形使喉道尺寸不稳定,边界层分布也非常不均匀,都会影响气流均匀性。所以,后期大多数高超声速风洞安装了锥形或型面轴对称喷管。锥形喷管加工容易,但产生锥型流场,所以后来逐渐被型面喷管代替。在马赫数大于 7的情况下,对高温高压下工作的喷管喉道,一般用水冷却。


       常规高超声速风洞的典型气动性能以实验马赫数和单位雷诺数来表征。以空气作实验气体的典型风洞的实验马赫数为5~14,每米雷诺数的量级为3×106。为进一步提高实验马赫数和雷诺数,采用凝结温度极低(4 开)的氦气作实验气体,在室温下马赫数可达到25;加热到1000开时马赫数可达到42。


       世界上第一座常规高超声速风洞是德国在第二次世界大战时建造的。这是一座暂冲式风洞。马赫数上限为10,实验段尺寸为1米×1米。德国战败,风洞未能完全建成。战后,美国建造了多座尺寸在0.45米以上的常规高超声速风洞,少数为连续式,大多为暂冲式。

4.试验所用高超声速风洞

       FD-07风洞是一座自由射流暂冲式高超声速风洞,喷管出口直径为0.5米,攻角机构可实现的攻角变化范围为-10° ~27°。洞体分马赫数5~8和10~12两条线。

4.jpg

图1. 风洞试验台

参考文献

[1] Holmes J.D. Wind Loading on Structures. London: Spon Press, 2001.

[2] Barlow, J.B. Rae, W.H. and Pope, A. Low speed wind tunnel testing. John Wiley & Sons, Inc, 1999.

[3] Eckardt, Dietrich. The 1x1 m hypersonic wind tunnel Kochel/Tullahoma, CEAS Space Journal, 2015, 7(1): 23-36.

[4] Wegener P P, Mack L M. Condensation in supersonic and hypersonic wind tunnels[J]. Advances in applied mechanics, 1958, 5: 307-447.

[5] Hypersonic wind tunnel: U.S. Patent 3,045,481[P]. 1962-7-24.

[6] Hypersonic wind tunnel: U.S. Patent 3,111,843[P]. 1963-11-26.


Recommended Reading

推荐阅读